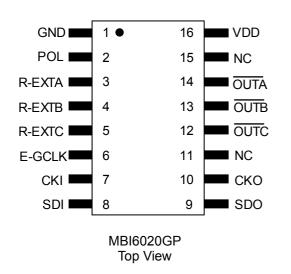


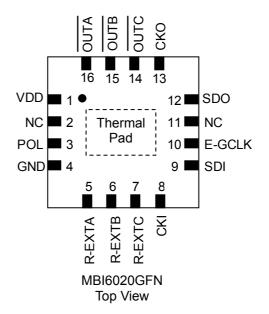
Features

- 3-channel constant current sink driver for RGB LED clusters
- Constant current range 5~50mA
- Individual output current adjusted through external resistors
- Sustaining voltage at output channels: 17V (max.)
- Supply voltage 3V~5.5V
- Embedded 16-bit PWM generator
 - Gray scale clock generated by the embedded oscillator or the external clock
 - PWM counter reset function
 - S-PWM technology
- Two selectable gray scale modes .
 - 16-bit gray scale mode (with optional 8-bit dot correction)
 - 10-bit gray scale mode (with optional 6-bit dot correction)
- Reliable data transmission
 - Daisy-chain topology
 - Two-wire only transmission interface
 - Clock reverse
 - Built-in buffer for long-distance transmission
- Flexible operation modes
 - Auto-synchronization mode
 - Manual-synchronization mode
- Selectable polarity reversion to drive high-power drivers or MOS
- **RoHS-compliant packages**

Application

- Architecture decorative lighting
- Mesh display, LED strip
- Neon lamp alternative
- PWM generator

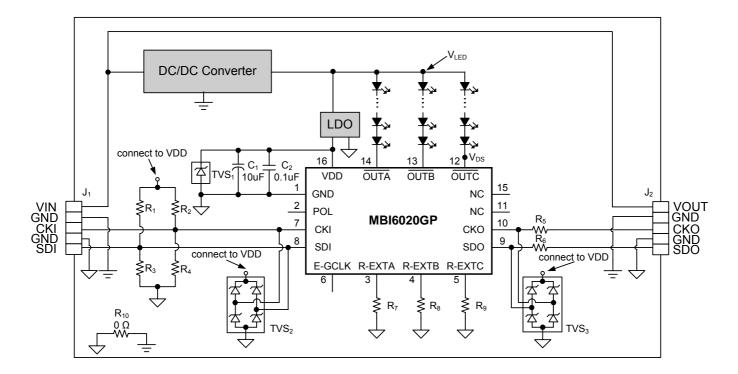

Product Description


MBI6020 is a 3-channel, constant current, PWM-embedded LED sink driver for small RGB LED cluster. MBI6020 provides constant current ranging from 5mA to 50mA for each output channel and three output channels are adjustable with three corresponding external resistors. Besides, MBI6020 can support both 3.3V and 5V power systems and sustain 17V at output channels.

With Scrambled-PWM (S-PWM) technology, MBI6020 enhances pulse width modulation by scrambling the "on" time into several "on" periods, so that MBI6020 reduces the data transmission bandwidth at the same gray scale performance. Besides, the gray scale clock, GCLK, can be generated by either the embedded oscillator or the external clock source. Moreover, MBI6020 provides two selectable gray scale modes: 16-bit gray scale mode and 10-bit gray scale mode. The 16-bit gray scale mode provides 65,536 gray scales for each LED to enrich the color with optional 8-bit dot correction to adjust each LED by 256-step dot correction to calibrate the LED brightness. On the other hand, the 10-bit gray scale mode provides 1,024 gray scales with optional 6-bit dot correction to adjust each LED by 64-step dot correction.

Furthermore, MBI6020 features a two-wire only transmission interface to simplify the system controller design. To improve the transmission quality, MBI6020 provides clock reverse function to enhance long-distance transmission. MBI6020 is flexible for either auto-synchronization or manual-synchronization. In addition, MBI6020 preserves selectable polarity reversion to drive high-power drivers or MOS as a PWM controller.

Pin Configuration



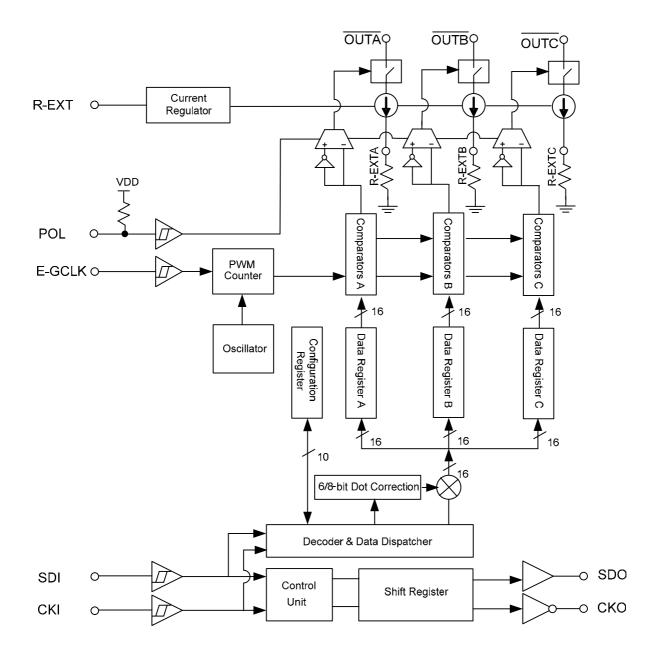
Terminal Description

Pin		Nama	Franction
GP	GFN	Name	Function
1	4	GND	Ground terminal
			Input terminal for selecting output polarity
			Internal pull-high
2	3	POL	High: drive LED or low-active regulators or PMOS
			Low: output reversed to work as a PWM controller to drive high-active
			regulators or NMOS
3,4,5	5,6,7	R-EXTA,B,C	Input terminals for setting output current by connecting to an external
0,7,0	5,0,7	R-EXTA,B,C	resistor
14,13,12	16,15,14	OUTA, B, C	Output terminals for constant current output
6	10	E-GCLK	Input terminal for external GCLK, the clock for PWM counting
0	10	E-GCLK	Internal pull-low
11	11	NC	Keep unconnected
	11	NC	Internal pull-low
7	8	СКІ	Input terminal for clock input
8	9	SDI	Input terminal for serial data input
10	13	СКО	Output terminal for clock output
9	12	SDO	Output terminal for serial data output
15	2	NC	Keep unconnected
10	۷		Internal pull-high
16	1	VDD	3.3V/5V supply voltage terminal
-	-	Thermal Pad	Heat dissipation pad* Please connect to GND.

*The desired thermal conductivity will be improved on condition that a heat-conducting copper foil on PCB is soldered with thermal pad.

Typical Application Circuit

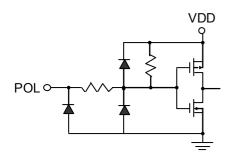
Note:

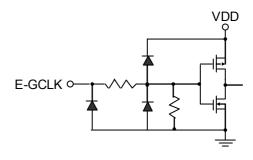

1. $D_1 \sim D_9$ are Transient Voltage Suppressor (TVS) for overshoot/undershoot/ESD protection. The suggested maximum off-state capacitance (Co) of TVS is 4pF.

2. $C_1 \sim C_2$ are required. The values of the $C_1 \sim C_2$ are reference only. Tantalum capacitors and Ceramic capacitors are recommended.

3. For hot swapping, system grounding, connector design, external ESD protection, or detailed circuit information,

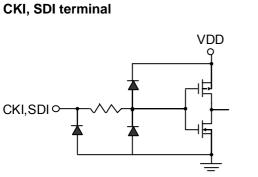
Please refer to the "MBI6020 Application Note" for detailed information.

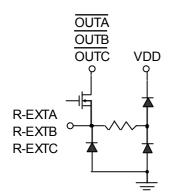

Block Diagram



LED Driver for Small RGB Cluster

Equivalent Circuits of Inputs and Outputs


POL terminal



CKO, SDO terminal

E-GCLK terminal

R-EXTA,B,C, OUTA,B,C terminal

VDD СКО,SDO

Maximum Rating

Characteri	stic	Symbol	Rating	Unit
Supply Voltage		V _{DD}	0~7	V
Sustaining Voltage at CKI, SDI,	E-GCLK, POL Pins	V _{IN}	-0.4~V _{DD} +0.4	V
Sustaining Voltage at CKO, SD	O Pins	V _{OUT}	-0.4~V _{DD} +0.4	V
Sustaining Voltage at $\overline{\text{OUTA}}$ ~	OUTC	V _{DS}	-0.5~+17	V
Output Current per Output Char	nnel	I _{OUT}	+50	mA
GND Terminal Current		I _{GND}	160	mA
Power Dissipation	GP	5	1.66	W
(On 4 Layer PCB, Ta=25°C)*	GFN	P _D	2.48	W
Thermal Resistance	GP	5	75.33	°C/W
(By simulation, on 4 Layer PCB)* GFN	R _{th(j-a)}	50.31	°C/W
Operating Junction Temperatur	e	$T_{j,max}$	150	°C
Operating Temperature		T _{opr}	-40~+85	°C
Storage Temperature		T _{stg}	-55~+150	°C
	Human Body Mode (MIL-STD-883G Method 3015.7)	НВМ	Class 3A (4000V~7999V)	-
ESD Rating	Machine Mode (JEDEC EIA/JESD22-A115)	MM	Class C (400V)	-

*The PCB size is 76.2mm*114.3mm in simulation. Please refer to JEDEC JESD51.

Note: The performance of thermal dissipation is strongly related to the size of thermal pad, thickness and layer numbers of the PCB. The empirical thermal resistance may be different from simulative value. Users should plan for expected thermal dissipation performance by selecting package and arranging layout of the PCB to maximize the capability.

Electrical Characteristics (V_{DD}=5.0V, Ta=25°C)

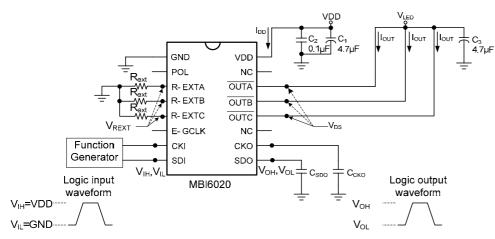
Characteristics		Symbol	Со	ndition	Min.	Тур.	Max.	Unit
Supply Voltage V _{DD}		V _{DD}	-		4.5	5.0	5.5	V
Sustaining Voltage Ports	at OUT	V _{DS}		C Off	-	-	17.0	V
Output Current		Ι _{ουτ}	Refer to "Test Electrical Cha		5	-	50	mA
Driving Current		I _{ОН}	CKO, SDO at	V _{OH} =4.8V	2.0	3.0	3.8	mA
		I _{OL}	CKO, SDO at	V _{OH} =0.2V	2.0	3.0	4.3	mA
Output Leakage Cu	irrent	I _{OUT}	V _{DS} =17.0V and	d channel off	-	-	1.0	μA
Current Skew (Cha	nnel)	dl _{out}	I _{OUT} =20mA V _{DS} =1.0V	R _{ext} =20Ω	-	±1.5	±3.0	%
Current Skew (IC)		dl _{OUT2}	I _{OUT} =20mA V _{DS} =1.0V	R _{ext} =20Ω	-	±3.0	±6.0	%
Output Current vs. Output Voltage Reg	gulation*	%/dV _{DS}	V _{DS} within 1.0V and 3.0V		-	±0.1	±0.5	%/V
Output Current vs. Supply Voltage Regulation*		%/dV _{DD}	V_{DD} within 4.5V and 5.5V		-	±1.0	±2.0	%/V
Input Voltage of CKI, SDI, E-GCLK,	"H" level	V _{IH}	-		$0.73 \mathrm{xV}_{\mathrm{DD}}$	-	V _{DD}	V
POL Pins	"L" level	V _{IL}	-		GND	-	$0.28 \mathrm{xV}_{\mathrm{DD}}$	V
Output Voltage of	"H" level	V _{OH}	I _{ОН} =-3.0mA		V _{DD} -0.2	-	-	V
CKO, SDO Pins	"L" level	V _{OL}	I _{OL} =+3.0mA		-	-	0.2	V
Voltage at R-EXTA,	,B,C Pins	V _{REXT}	OUTA ~ OUTC On		0.36	0.41	0.44	V
Knee Voltage		V _{Knee}	R _{ext} =8Ω@50mA		0.75	0.85	1.00	V
Pull-up Resistor at I	POL Pin	R _{IN} (up)	-		-	470	-	KΩ
Pull-down Resistor at E-GCLK, NC Pins		R _{IN} (down)	-		-	470	-	KΩ
	"Off"	I _{DD} (off)	0,11	R_{ext} =10Ω, CKI=Low, CKO, SDO= NC, OUTA ~ OUTC Off		2.0	3.5	
Supply Current**	"On" I _{DD} (on)		R_{ext} =20Ω, CKI=Low, CKO, SDO= NC, OUTA ~ OUTC On		-	3.0	4.0	mA
		R _{ext} =20Ω, CKI	=10MHz, CKO, UTA ~ OUTC On	-	5.0	6.0		

*One channel turns on.

** The supply current may vary with the loading conditions.

PWM-Embedded 3-Channel Constant Current

LED Driver for Small RGB Cluster


Electrical Characteristics (V_{DD}=3.3V, Ta=25°C)

Characteristics		Symbol	Co	ndition	Min.	Тур.	Max.	Unit
Supply Voltage		V _{DD}	-		3.0	3.3	3.6	V
Sustaining Voltage Ports	at OUT	V _{DS}		C Off	-	-	17.0	V
Output Current		Ι _{ουτ}	Refer to "Test Electrical Cha		5	-	50	mA
Driving Current		I _{ОН}	CKO, SDO at	V _{OH} =3.1V	1.8	2.0	2.8	mA
Driving Current		I _{OL}	CKO, SDO at	V _{OH} =0.2V	1.8	2.0	3.4	mA
Output Leakage Cu	irrent	I _{OUT}	V _{DS} =17.0V an	d channel off	-	-	1.0	μA
Current Skew (Cha	nnel)	dl _{out}	I _{OUT} =20mA V _{DS} =1.0V	R _{ext} =20Ω	-	±1.5	±3.0	%
Current Skew (IC)		dl _{out2}	I _{OUT} =20mA V _{DS} =1.0V	R _{ext} =20Ω	-	±3.0	±6.0	%
Output Current vs. Output Voltage Regulation*		$%/dV_{DS}$	V _{DS} within 1.0V and 3.0V		-	±0.1	±0.5	%/V
Output Current vs. Supply Voltage Regulation*		$\%/dV_{DD}$	V_{DD} within 2.7V and 3.6V		-	±1.0	±2.0	%/V
Input Voltage of	"H" level	V _{IH}	-		$0.73 \mathrm{xV}_{\mathrm{DD}}$	-	V_{DD}	V
CKI, SDI, E-GCLK, POL Pins	"L" level	V _{IL}	-		GND	-	$0.28 \mathrm{xV}_{\mathrm{DD}}$	V
Output Voltage of	"H" level	V _{OH}	I _{ОН} =-3.0mA		V _{DD} -0.2	-	-	V
CKO, SDO Pins	"L" level	V _{OL}	I _{OL} =+3.0mA		-	-	0.2	V
Voltage at R-EXTA,	,B,C Pins	V _{REXT}	OUTA ~ OUTC On		0.36	0.41	0.44	V
Knee Voltage		V _{Knee}	R _{ext} =8Ω@50mA		0.75	0.85	1.00	V
Pull-up Resistor at POL Pin		R _{IN} (up)	-		-	450	-	KΩ
Pull-down Resistor at E-GCLK, NC Pins		R _{IN} (down)	-		-	450	-	KΩ
	"Off"	I _{DD} (off)	R _{ext} =10Ω, CK SDO= NC, OL	=Low, CKO, JTA ~ OUTC Off	-	2.0	3.5	
Supply Current**			$R_{ext}=20\Omega$, CKI=Low, CKO, SDO= NC, OUTA ~ OUTC On		-	2.5	3.5	mA
	"On" I _{DD} (on)		R _{ext} =20Ω, CK	=10MHz, CKO, UTA ~ OUTC On	-	4.0	5.0	

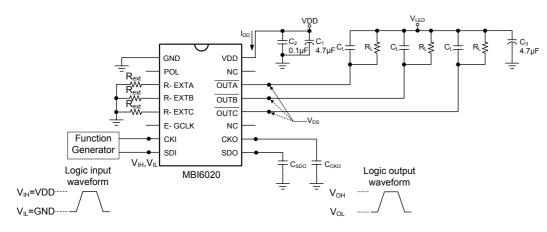
*One channel turns on.

**The supply current may vary with the loading conditions.

Test Circuit for Electrical Characteristics

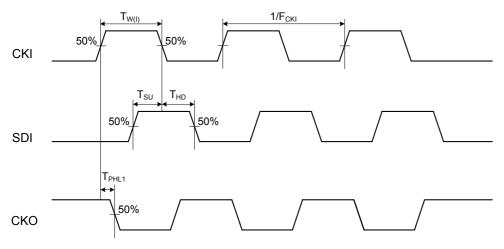
Switching Characteristics (V_{DD}=5.0V, Ta=25°C)

Characteristics			Condition	Min.	Тур.	Max.	Unit	
Setup Time	SDI–CKI↓	t _{su}		7.5	-	-	ns	
Hold Time	CKI↓–SDI	t _{HD}		7.5	-	-	ns	
Propagation Delay Time	CKI↑–CKO↓	t _{PHL1}		25	30	35	ns	
("H" to "L")	E-GCLK↑–OUTA ↓	t _{PHL3}		25	36	46	ns	
Propagation Delay Time ("L" to "H")	SDO∱↓-CKO∱	t _{PHL2}	V _{LED} =4V	7	10	14	ns	
Staggered Delay of Output	OUTA ~ OUTB	t _{SD}	V _{DS} =1.0V V _{IH} =V _{DD}	-	5	-	ns	
Staggered Delay of Output	OUTB~OUTC	t _{SD}	V _{IL} =GND	-	5	-	ns	
Pulse Width	CKI*	t _{w(I)}	I _{oυτ} =20mA R _I =150Ω	15	-	-	ns	
Minimum Pulse Width of PWM	OUTA ~ OUTC	t _{wDM}	C _L =10pF C1=4.7uF	30	35	40	ns	
Rise Time	CKO-SDO	t _{or}	C2=0.1uF	2	6	10	ns	
	OUTA ~ OUTC	t _{OR1}	C3=4.7uF C _{cko} =8pF	6.0	11.0	16.0	ns	
Fall Time	CKO-SDO	t _{OF}	C _{SDO} =8pF	2	6	10	ns	
	OUTA ~ OUTC	t _{OF1}		15	20	25	ns	
	CKI*	F _{скі}		0.2	-	10	MHz	
Frequency	GCLK	F _{GCLK}		-	-	20		
	Internal Oscillator	F _{osc}		18.0	20.0	22.0		

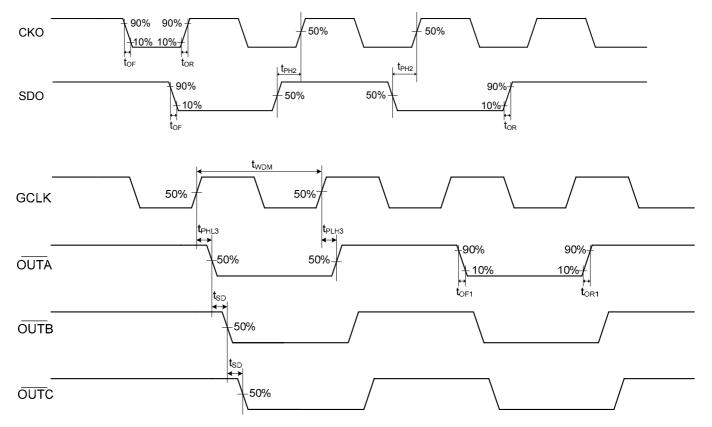

*The maximum frequency may be limited by different application conditions. Please refer to the application note for details.

Switching Characteristics (V_{DD} =3.3V, Ta=25°C)

Characteristics	Characteristics			Min.	Тур.	Max.	Unit
Setup Time	CKI↓–SDI	t _{su}		7.5	-	-	ns
Hold Time	SDI–CKI↓	t _{HD}		7.5	-	-	ns
Propagation Delay Time	CKI↑–CKO↓	t _{PHL1}		40	45	50	ns
("H" to "L")	$E\text{-}GCLK\uparrow \text{-}\overline{OUTA}\downarrow$	t _{PHL3}		30	42	54	ns
Propagation Delay Time ("L" to "H")	SDO∱↓-CKO∱	t _{PHL2}	V _{LED} =4V	8	12	16	ns
	OUTA ~ OUTB	t _{SD}	V_{DS} =1.0V	-	8	-	ns
Staggered Delay of Output		t _{sD}	V _{IH} =V _{DD} V _{IL} =GND	-	8	-	ns
Pulse Width	СКІ	t _{w(I)}	I _{OUT} =20mA R _I =150Ω	15	-	-	ns
Minimum Pulse Width of PWM	OUTA ~ OUTC	t _{wDM}	C _L =10pF C1=4.7uF	40	55	70	ns
Rise Time	CKO-SDO	t _{or}	C2=0.1uF C3=4.7uF	4	10	15	ns
Rise Time	OUTA ~ OUTC	t _{OR1}	С3–4.70F С _{СКО} =8рF	13.0	20.0	25.0	ns
	CKO-SDO	t _{OF}	C _{SDO} =8pF	4	10	15	ns
Fall Time	OUTA ~ OUTC	t _{OF1}		20.0	25.0	30.0	ns
	CKI*	F _{скі}		0.2	-	10	
Frequency	GCLK	F _{GCLK}		-	-	20	MHz
пециенсу	Internal Oscillator	F _{osc}		18.0	20.0	22.0	11112


*The maximum frequency may be limited by different application conditions. Please refer to the application note for details.

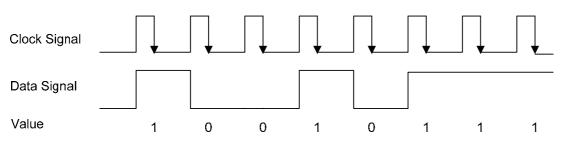
Test Circuit for Switching Characteristics



Timing Waveform

Signal Input and Output with Clock Reverse

Output Timing


Principle of Operation

MBI6020 receives the data packet containing targeted gray scale data from the controller, and turns on the output channels according to the gray scale data. The gray scale clock of PWM generator, GCLK, can be used as the embedded oscillator or the external clock source. MBI6020 provides SPI-like interface (CKI, SDI), a two-wire only transmission interface, to address the data, so that MBI6020 receives the data directly without latching data.

Control Interface: SPI-Like Interface (CKI, SDI)

MBI6020 adopts the SPI-like interface (CKI/SDI). By SPI-like interface, MBI6020 samples the data (SDI) at the falling edge of the clock (CKI). The following waveforms is the example of the SPI-like interface.

SPI-Like Interface (CKI, SDI)

Gray Scale Control

MBI6020 provides two gray scale modes: 16-bit gray scale mode and 10-bit gray scale mode. MBI6020 specifically adopts S-PWM technology in 16-bit gray scale mode to scramble the 16-bit PWM to 64 segments, so that the visual refresh rate can be increased. For example, with S-PWM, the default PWM clock frequency is 10MHz (the frequency of internal oscillator/2), and therefore, the visual refresh rate of 16-bit gray scale mode will be increased to: 10MHz/65536x64=9,766Hz

On the other hand, MBI6020 provides 10-bit gray scale mode by traditional PWM. In 16-bit gray scale mode, MBI6020 achieves 65,536 gray scales for each LED, and in 10-bit gray scale mode, MBI6020 achieves 1,024 gray scales.

MBI6020 continuously repeats the PWM cycle and turns on the output ports according to the image data until the next image data is correctly recognized. Once the next input data is correctly recognized, MBI6020 will stop the present PWM cycle and restart a new PWM cycle to show the new data immediately.

MBI6020

PWM-Embedded 3-Channel Constant Current LED Driver for Small RGB Cluster

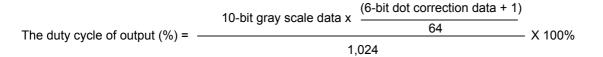
Dot Correction Control

MBI6020 also provides 8-bit or 6-bit dot correction control in 16-bit or 10-bit gray scale mode respectively. Dot correction control helps calibrate LED brightness and reduces the loading of calculation in controllers. In addition, designed with S-PWM technology, MBI6020 operates dot correction without sacrificing the visual refresh rate.

For valid dot correction control, users have to program dot correction data before sending gray scale data.

16-bit gray scale data with 8-bit dot correction data

The following is the equation for the duty cycle of output in 16-bit gray scale mode. For 8-bit dot correction, the default value of dot correction data is 255.


The duty cycle of output (%) = $\frac{16\text{-bit gray scale data x}}{65,536} \frac{(8\text{-bit dot correction data + 1})}{256} \times 100\%$

According to the above equation, the following table shows the examples:

Example	Gray scale data	Dot correction data	Duty Cycle of Output
1	32,768	255 (Default)	50%
2	32,768	127	25%
3	16,384	255	25%
	•	•	•
•		•	•

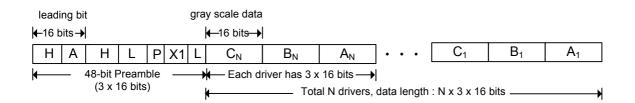
10-bit gray scale with 6-bit dot correction data

The following is the equation for the duty cycle of output in 10-bit gray scale mode. For 6-bit dot correction, the default value of dot correction data is 63.

According to the above equation, the following table shows the examples:

Example	Gray scale data	Dot correction data	Duty Cycle of Output
1	512	63 (Default)	50%
2	512	15	12.5%
3	256	31	12.5%
	•	•	-
•		•	
-			•

Setting the Data Types by the Header


MBI6020 provides six kinds of headers and input data types shown as the table below:

Header H[5:0]	Data Type
6'b11 1111	16-bit gray scale data
6'b10 1011	10-bit gray scale data
6'b11 0011	8-bit dot correction data
6'b10 0111	6-bit dot correction data
6'b10 0011	16-bit configuration data
6'b11 0111	10-bit configuration data

Once MBI6020 receives the SDI=1 (1'b1), MBI6020 will start to check if the data is a valid header or not. If the 6-bit data is a valid header, the driver will latch the specific data according to the protocol. If the 6-bit data is not a valid header, MBI6020 will wait for another SDI=1 (1'b1) to check the validity of the next header.

16-bit Gray Scale Data

For 16-bit gray scale data, each word is 16 bits. Each MBI6020 needs 3 words (3x16=48 bits) for the gray scale data of \overline{OUTC} , \overline{OUTB} and \overline{OUTA} . Prior to the gray scale data, there is a 48-bit preamble. MBI6020 provides parity check function to check the count of bit to prevent the data transmission error. The data format is shown below:

48-bit	preamble

Bit	Definition	Value	Function
47:42	H[5:0]	111111	The header of 16-bit gray scale data
41:32	A[9:0]	000000000	Address. Always send 10'b 000000000
31:26	H[5:0]	111111	Double check the header
25:16	L[9:0]	N -1. N=Number of IC in series	Set the number of IC in series
			P[0] is the parity check bit of L[9:0]
			P[0]=1 if the count of "1" within L[9:0] is odd;
			P[0]=0 if the count of "1" within L[9:0] is even.
)] 0000~1111	P[1] is the parity check bit of A[9:0]
			P[1]=1 if the count of "1" within A[9:0] is odd;
15:12	P[3:0]		P[1]=0 if the count of "1" within A[9:0] is even.
10.12	1 [0.0]		P[2] is the parity check bit of H[5:0]
			P[2]=1 if the count of "1" within H[5:0] is odd;
			P[2]=0 if the count of "1" within H[5:0] is even.
			P[3] is the parity check bit of P[2:0]
			P[3]=1 if the count of "1" within P[2:0] is odd;
			P[3]=0 if the count of "1" within P[2:0] is even.
11:10	X1[1:0]	XX	Don't care
9:0	L[9:0]	N-1. N=Number of IC in series	Double check the number of IC in series

48-bit gray scale data

Bit	Definition	Value	Function
47:32	C _N [15:0]	00000000000000000~111111111	16 bits gray scale data of the nth OUTC
47.52 C _N [15.0]	111111	The ratio of $\overline{\text{OUTC}}$ turn-on time will be $C_N[15:0]/2^{16}$.	
31:16	B _N [15:0]	00000000000000000~111111111	16 bits gray scale data of the nth OUTB
51.10	31.10 D _N [15.0]	111111	The ratio of $\overline{\text{OUTB}}$ turn-on time will be B _N [15:0]/2 ¹⁶ .
15:0	A _N [15:0]	0000000000000000~111111111	16 bits gray scale data of the nth OUTA
15.0 F	A _{N[15.0]}	111111	The ratio of $\overline{\text{OUTA}}$ turn-on time will be $A_N[15:0]/2^{16}$.

The gray scale data of the last IC is sent first, followed by the previous ICs, and the first IC's gray scale data is sent in the end of the packet.

Example:

Gray scale data	The ratio of output turn-on time
0	0/2 ¹⁶
1	1/2 ¹⁶
2	2/2 ¹⁶
-	•
•	:
65535	65535/2 ¹⁶

10-bit Gray Scale Data

For 10-bit gray scale data, each word is 10 bits. Each MBI6020 needs 3 words (3x10=30 bits) for the gray scale data of \overline{OUTC} , \overline{OUTB} and \overline{OUTA} . Prior to the gray scale data, there is a 30-bit preamble. MBI6020 provides parity check function to check the count of bit to prevent the data transmission error. The data format is shown below:

lead	ing bit		gra	y scale data	I							
 ←10 k	oits →			←10 bits→								
Н	Ρ	A	L	C _N	B _N	A _N]•	•	•	C ₁	B ₁	A ₁
 	- 3	0-bit Preamb (3 x 10 bits)		← Each d	river has 3 > Tota		•	ı ler	ngth	:Nx3x10	bits	

30-bit preamble

Bit	Definition	Value	Function
29:24	H[5:0]	101011	The header of 10-bit gray scale data
			P[0] is the parity check bit of L[9:0].
			P[0]=1 if the count of "1" within L[9:0] is odd;
			P[0]=0 if the count of "1" within L[9:0] is even.
			P[1] is the parity check bit of A[9:0]
		0000~1111	P[1]=1 if the count of "1" within A[9:0] is odd;
23:20			P[1]=0 if the count of "1" within A[9:0] is even.
23.20	P[3:0]		P[2] is the parity check bit of H[5:0]
			P[2]=1 if the count of "1" within H[5:0] is odd;
			P[2]=0 if the count of "1" within H[5:0] is even.
			P[3] is the parity check bit of P[2:0]
			P[3]=1 if the count of "1" within P[2:0] is odd;
			P[3]=0 if the count of "1" within P[2:0] is even.
19:10	A[9:0]	000000000	Address. Always send 10'b 000000000
9:0	L[9:0]	N-1. N=Number of IC in series	Set the number of IC in series

30-bit gray scale data

Bit	Definition	Value	Function
29:20	C _N [9:0] 000000000~111111111		10 bits gray scale data of the nth OUTC
29.20		000000000~111111111	The ratio of \overline{OUTC} turn-on time will be $C_N[9:0]/2^{10}$.
19:10	B _N [9:0]	00000000 111111111	10 bits gray scale data of the nth OUTB
19.10	D _N [9.0]	000000000~111111111	The ratio of \overline{OUTB} turn-on time will be $B_N[9:0]/2^{10}$.
0.0	A [0:0]	000000000000000000000000000000000000000	10 bits gray scale data of the nth OUTA
9:0	A _N [9:0] 000000000~111111111		The ratio of $\overline{\text{OUTA}}$ turn-on time will be A _N [9:0]/2 ¹⁰ .

The gray scale data of the last IC is sent first, followed by the previous ICs, and the first IC's gray scale data is sent in the end of the packet.

Example:

Gray scale data	The ratio of output turn-on time
0	0/2 ¹⁰
1	1/2 ¹⁰
2	2/2 ¹⁰
•	•
•	-
1023	1023/2 ¹⁰

8-bit Dot Correction Data

For 8-bit dot correction data, each word is 16 bits. Each MBI6020 needs 3 words (3x16=48 bits) for the dot correction data of \overline{OUTC} , \overline{OUTB} and \overline{OUTA} . However, each dot correction data has only 8 bits, and the first 8 bits of each word are checking bits of dot correction. Prior to the dot correction data, there is a 48-bit preamble. MBI6020 provides parity check function to check the count of bit to prevent the data transmission error. The data format is shown below:

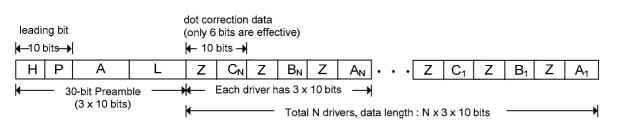
leading bit ← 16 bits →	dot correction o (only 8 bits are ← 16 bits→						
HAHL	P X1 L C _N C _N	B _N B _N A _N	Α _N	C ₁	C ₁ B ₁	B ₁	A ₁ A ₁
₩ 48-bit Pream		iver has 3 x 16 bit	s —▶				
(3 x 16 bits) ┝───	Total N driv	vers, data lengt	h:Nx3	x 16 bits		→

48-bit preamble

Bit	Definition	Value	Function
47:42	H[5:0]	110011	The header of 8-bit dot correction data
41:32	A[9:0]	000000000	Address. Always send 10'b 000000000
31:26	H[5:0]	110011	Double check the header
25:16	L[9:0]	N-1. N=Number of IC in series	Set the number of IC in series
			P[0] is the parity check bit of L[9:0].
			P[0]=1 if the count of "1" within L[9:0] is odd;
			P[0]=0 if the count of "1" within L[9:0] is even.
			P[1] is the parity check bit of A[9:0]
			P[1]=1 if the count of "1" within A[9:0] is odd;
15:12	P[3:0]	0000~1111	P[1]=0 if the count of "1" within A[9:0] is even.
10.12	1 [0.0]	0000~1111	P[2] is the parity check bit of H[5:0]
			P[2]=1 if the count of "1" within H[5:0] is odd;
			P[2]=0 if the count of "1" within H[5:0] is even.
			P[3] is the parity check bit of P[2:0]
			P[3]=1 if the count of "1" within P[2:0] is odd;
			P[3]=0 if the count of "1" within P[2:0] is even.
11:10	X1[1:0]	XX	Don't care
9:0	L[9:0]	N-1. N=Number of IC in series	Double check the number of IC in series

48-bit dot correction data

Bit	Definition	Value	Function
			Double check the dot correction data of $\overline{\text{OUTC}}$. It should
47:40	C _N [7:0]	0000000~1111111	be the same as bit [39:32]; otherwise, the dot correction
			data will not be latched.
			8 bits, dot correction data of OUTC
39:32	C _N [7:0]	0000000~1111111	The ratio of \overline{OUTC} turn-on time will be $(C_N[7:0]+1)/256 \text{ x}$
			gray scale data C _N .
			Double check the dot correction data of OUTB . It should
31:24	B _N [7:0]	0000000~1111111	be the same as bit[23:16]; otherwise, the dot correction
			data will not be latched.
			8 bits, dot correction data for OUTB
23:16	B _N [7:0]	0000000~1111111	The ratio of \overline{OUTB} turn-on time will be $(B_N[7:0]+1)/256 \text{ x}$
			gray scale data B _N .
			Double check the dot correction data of OUTA .It should
15:8	A _N [7:0]	0000000~1111111	be the same as bit[7:0]; otherwise, the dot correction data
			will not be latched.
			8 bits, dot correction data for OUTA
7:0	A _N [7:0]	0000000~1111111	The ratio of \overline{OUTA} turn-on time will be $(A_N[7:0]+1)/256 \text{ x}$
			gray scale data A _N .


The dot correction data of the last IC is sent first, followed by the previous ICs, and the first IC's dot correction data is sent in the end of the packet.

Example:

Dot correction data	Number of turn-on GCLK
0	1/256 x gray scale data
1	2/256 x gray scale data
2	3/256 x gray scale data
•	•
:	:
255	256/256 x gray scale data

6-bit Dot Correction Data

For 6-bit dot correction data, each word is 10 bits. Each MBI6020 needs 3 words (3x10=30 bits) for the dot correction data of \overline{OUTC} , \overline{OUTB} and \overline{OUTA} . However, each dot correction data has only 6 bits, and the first 4 bits of each word should be set as "0". Prior to the dot correction data, there is a 30-bit preamble. MBI6020 provides parity check function to check the count of bit to prevent the data transmission error. The data format is shown below:

30-bits preamble

Bit	Definition	Value	Function
29:24	H[5:0]	100111	The header of 6-bit dot correction data
			P[0] is the parity check bit of L[9:0].
			P[0]=1 if the count of "1" within L[9:0] is odd;
			P[0]=0 if the count of "1" within L[9:0] is even.
			P[1] is the parity check bit of A[9:0]
		0000~1111	P[1]=1 if the count of "1" within A[9:0] is odd;
23:20	P[3:0]		P[1]=0 if the count of "1" within A[9:0] is even.
23.20	F[3.0]	0000-1111	P[2] is the parity check bit of H[5:0]
			P[2]=1 if the count of "1" within H[5:0] is odd;
			P[2]=0 if the count of "1" within H[5:0] is even.
			P[3] is the parity check bit of P[2:0]
			P[3]=1 if the count of "1" within P[2:0] is odd;
			P[3]=0 if the count of "1" within P[2:0] is even.
19:10	A[9:0]	000000000	Address. Always send 10'b 000000000
9:0	L[9:0]	N-1. N=Number of IC in series	Set the number of IC in series

30-bit dot correction data

Bit	Definition	Value	Function		
29:26	20.26 712.01	0000	Check bits of C_N [5:0]. Please send 4b'0000; otherwise,		
29.20	Z[3:0]	0000	the dot correction data will not be latched.		
			6 bits dot correction data for OUTC		
25:20	C _N [5:0]	00000~11111	The ratio of \overline{OUTC} turn-on time will be (C _N [5:0]+1)/64 x		
			gray scale data C _N .		
19:16	:16 Z[3:0]	7[2:0]	7[3:0]	[3:0]	Check bits of B_N [5:0]. Please send 4b'0000; otherwise,
19.10		0000	the dot correction data will not be latched.		
			6 bits dot correction data for OUTB		
15:10	B _N [5:0]	000000~111111	The ratio of $\overline{\text{OUTB}}$ turn-on time will be (B _N [5:0]+1)/64 x		
			gray scale data B _N .		
9:6	7[3:0]	[[3:0] 0000	Check bits of A_N [5:0]. Please send 4b'0000; otherwise,		
9.0	2[3.0]		the dot correction data will not be latched.		
	5:0 A _N [5:0]		6 bits dot correction data for OUTA		
5:0		N[5:0] 000000~111111	The ratio of $\overline{\text{OUTA}}$ turn-on time will be $(A_N[5:0]+1)/64 \text{ x}$		
			gray scale data A _N .		

The dot correction data of the last IC is sent first, followed by the previous ICs, and the first IC's dot correction data is sent in the end of the packet.

Example:

Dot correction data	Number of turn-on GCLK
0	1/64 x gray scale data
1	2/64 x gray scale data
2	3/64 x gray scale data
•	•
•	•
63	64/64 x gray scale data

16-bit Configuration Data

For 16-bit configuration data, each word is 16 bits. Each MBI6020 needs 3 words (3x16=48 bits) for the configuration data. However, each configuration data has only 10 bits, and the MSB 6 bits of each word are invalid. Prior to the configuration data, there is a 48-bit preamble. MBI6020 provides parity check function to check the count of bit to prevent the data transmission error. The data format is shown below:

leading bit <mark>♦</mark> –16 bits -→	configuration data (only 10 bits are effective.) ┢━ 16 bits ━━
HAH	L P X1 L X2 CF1 X2 CF1 X3 CF2 · · · X2 CF1 X2 CF1 X3 CF2
48-bit Pre	
(3 x 16	Total N drivers, data length : N x 3 x 16 bits

48-bits	18-bits preamble					
Bit	Definition	Value	Function			
47:42	H[5:0]	100011	The header of 16-bit configuration data			
41:32	A[9:0]	000000000	Address. Always send 10'b 000000000			
31:26	H[5:0]	100011	Double check the header			
25:16	L[9:0]	N-1. N=Number of IC in series	Set the number of IC in series			
			P[0] is the parity check bit of L[9:0]			
			P[0]=1 if the count of "1" within L[9:0] is odd;			
		0000~1111	P[0]=0 if the count of "1" within L[9:0] is even.			
			P[1] is the parity check bit of A[9:0]			
			P[1]=1 if the count of "1" within A[9:0] is odd;			
15:12	P[3:0]		P[1]=0 if the count of "1" within A[9:0] is even.			
10.12	1 [0.0]		P[2] is the parity check bit of H[5:0]			
			P[2]=1 if the count of "1" within H[5:0] is odd;			
			P[2]=0 if the count of "1" within H[5:0] is even.			
			P[3] is the parity check bit of P[2:0]			
			P[3]=1 if the count of "1" within P[2:0] is odd;			
			P[3]=0 if the count of "1" within P[2:0] is even.			
11:10	X1[1:0]	XX	Don't care			
9:0	L[9:0]	N-1. N=Number of IC in series	Double check the number of IC in series			

48-bit configuration data

Bit	Definition	Value	Function
47:42	X2[5:0]	XXXXXX	Don't care
41:32	CF1[9:0]	000000000~111111111	10 bits data of configuration register bank 1 (CF1)
31:26	X2[5:0]	XXXXXX	Don't care
			Double check the data of configuration register bank 1
25:16	CF1[9:0]	000000000~111111111	(CF1). It should be the same as bit[41:32], otherwise the
			data will not be written into register.
15:3	X3[12:0]	XXXXXXXXXXXXX	Don't care.
2:0	CF2[2:0]	000~111	3 bits data of configuration register bank 2 (CF2)

The configuration data of the last IC is sent first, followed by the previous ICs, and the first IC's configuration data is sent in the end of the packet.

10-bit Configuration Data

For 10-bit configuration data, each word is 10 bits. Each MBI6020 needs 3 words (3x10=30 bits) for the configuration data. Prior to the configuration data, there is a 30-bit preamble. MBI6020 provides parity check function to check the count of bit to prevent the data transmission error. The data format is shown below:

leading bit	gray scale data											
← 10 bits →		← 10 bits →										
HP	A	L	CF1	CF1	X4	CF2	••	•	CF1	CF1	X4	CF2
	t Preamble x 10 bits)	e →	← Each (driver has				ngth	: N x 3 x 10) bits		

30-bit	30-bit preamble					
Bit	Definition	Value	Function			
29:24	H[5:0]	110111	The header of 10-bit configuration data			
			P[0] is the parity check bit of L[9:0].			
			P[0]=1 if the count of "1" within L[9:0] is odd;			
			P[0]=0 if the count of "1" within L[9:0] is even.			
			P[1] is the parity check bit of A[9:0]			
	23:20 P[3:0] 0000~1111		P[1]=1 if the count of "1" within A[9:0] is odd;			
23:20		0000~1111	P[1]=0 if the count of "1" within A[9:0] is even.			
20.20	1 [0.0]		P[2] is the parity check bit of H[5:0]			
			P[2]=1 if the count of "1" within H[5:0] is odd;			
			P[2]=0 if the count of "1" within H[5:0] is even.			
			P[3] is the parity check bit of P[2:0]			
			P[3]=1 if the count of "1" within P[2:0] is odd;			
			P[3]=0 if the count of "1" within P[2:0] is even.			
19:10	A[9:0]	000000000	Address. Always send 10'b 000000000			
9:0	L[9:0]	N-1. N=Number of IC in series	Set the number of IC in series			

30-bit configuration data

Bit	Definition	Value	Function
29:20	CF1[9:0]	000000000~111111111	10 bits data of configuration register bank 1 (CF1)
			Double check the data of configuration register bank
19:10	CF1[9:0]	000000000~111111111	1(CF1). It should be the same as bit[29:20]; otherwise,
			the data will not be written into register.
9:3	X4[6:0]	XXXXXXX	Don't care
2:0	CF2[2:0]	000~111	3 bits data of configuration register bank 2 (CF2)

The configuration data of the last IC is sent first, followed by the previous ICs, and the first IC's configuration data is sent in the end of the packet.

Definition of Configuration Register

MBI6020 provides two configuration register banks: configuration register bank 1 (CF1) and configuration register bank 2 (CF2) as defined in the tables below.

Configuration Register Bank 1 (CF1):

	MSB									LSB
Bit	9	8	7	6	5	4	3	2	1	0
Default Value	1	0	0	1	1	1	1	1	1	0

Note: Bit [15:10] should be set as "0" to avoid signal misjudgment.

Bit	Definition	Value	Function
		11	PWM clock=frequency of internal oscillator
	PWM clock	10(default)	PWM clock=frequency of internal oscillator divided by two
9:8	frequency selection	01	PWM clock=frequency of internal oscillator divided by four
		00	PWM clock=frequency of internal oscillator divided by eight
7	Reserved	0	Reserved
		11(default)	Internal oscillator
0.5	:5 GCLK source selection	10	E-GCLK pin
6:5		01	CKI pin
		00	Reserved
4	PWM counter reset	1(default)	PWM counter reset after configuring control register
4	P www.counter reset	0	PWM counter does not reset after configuring control register
3	PWM data	1(default)	Automatic synchronization
3	synchronization	0	Manual synchronization
2:1	Clock reverse	11	The waveform is reversed from CKI to CKO; other
2.1			combinations are reserved for internal tests.
0	Parity check	1	Enable
U	Fanty Check	0(default)	Disable

PWM Clock Frequency

MBI6020 provides four kinds of internal GCLK frequency, which is the internal oscillator frequency divided by 1, 2, 4, and 8, for different applications according to the bits of CF1[9:8].

GCLK Source Selection

MBI6020 provides flexibility to select GCLK source by setting the bits of CF1[6:5].

PWM Counter Reset

MBI6020 can optionally reset the PWM counter by setting the bit of CF1[4] after programming configuration data.

PWM Data Synchronization

MBI6020 is also flexible for either manual-synchronization or auto-synchronization by setting the bit of CF1[3]. For auto-synchronization, the bit of CF1[3] is set to "1" (default). MBI6020 will automatically process the synchronization of previous data and next data for PWM counting. The next image data will be updated to output buffers and start PWM counting when the previous data finishes one internal PWM cycle.

For manual-synchronization, the bit of CF1[3] is set to "0". Once the next input data is correctly recognized, MBI6020 will stop the present PWM cycle and restart a new PWM cycle to show the new data immediately.

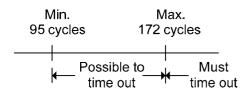
Clock Reverse

MBI6020 enhances the capability of cascading MBI6020 from clock reverse function by setting the bits of CF1[2:1]. The waveform will be reversed from CKI to CKO to balance the duty of the clock signal. This improves the signal integrity of data transmission.

Configuration Register Bank 2 (CF2):

Default Value

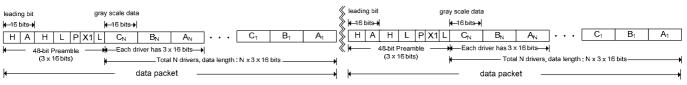
	LSB				
Bit	2	1	0		
Value	ue 111				


Note: Bit [15:3] should be set as "0" to avoid signal misjudgment.

Bit	Definition	Value	Function
2	Time out	1 (default)	Enable
2	Time-out	0	Disable
	1:0 CKI time-out period selection	11(default)	95~172 cycles
1.0		10	47~86 cycles
		01	23~44 cycles
		00	11~22 cycles

Time-Out Protection

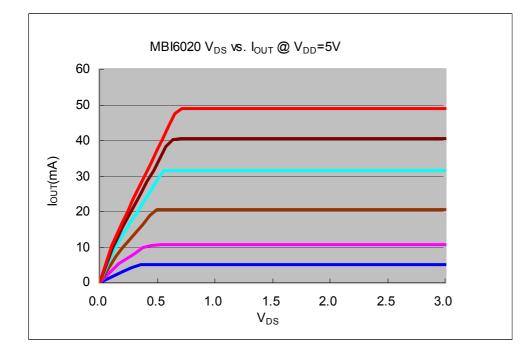
The time-out protection can be enabled or disabled by the bit of CF2[2]. In addition, the time-out period can be set by the bits of CF2[1:0]. The default value is 95~172 cycles. If the CKI pulled-low for more than the preset period, MBI6020 may identify the wires as disconnection. To prevent from misreading, MBI6020 will ignore the present input data and continuously show the previous image data until the next image data is correctly recognized. Users may choose a suitable time-out period depending on the timing of the control system.

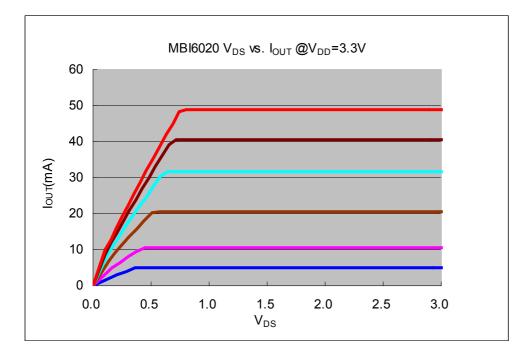

Take the default CKI time-out period (CF2[1:0]=11) for example, MBI6020 may recognize the input data as a new packet during the CKI time-out period (95~172 cycles). To prevent from time-out, users should limit the period shorter than 95 cycles. The illustration is as below:

The Interval between Two Data Packets

MBI6020 identifies the data as a new packet after time-out, so the interval between two data packets should be larger than the maximum value of the CKI time-out period. For example, if the CF2[1:0]=11 (default), the interval between two data packets should be larger than 172 cycles.

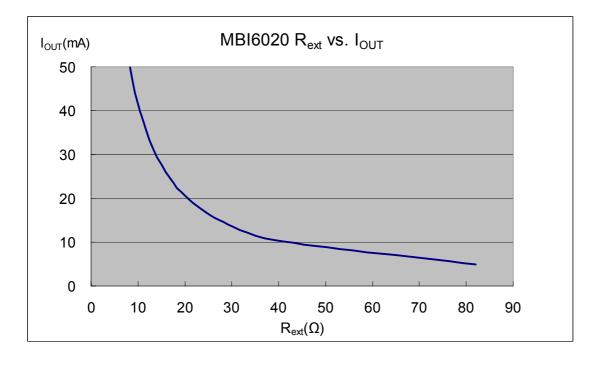
If CKI is pulled-low and stops for more than the setting of CKI time-out period, MBI6020 will start to check the valid header of the next data packet. The time-out interval between two data packets helps MBI6020 identify the data stream correctly. The following timing diagram illustrates the interval between two data packets in 16-bit gray scale mode.




The interval between two data packets > maximum value of CKI time-out period (172/86/44/22 clocks).

Constant Current

1) MBI6020 performs excellent current skew: the maximum current variation between channels is less than $\pm 3\%$, and that between ICs is less than $\pm 6\%$.


2) In addition, in the saturation region, the output current keeps constant when the output voltage (V_{DS}) is changed. This characteristic guarantees the LED show the same brightness regardless of the variations of LED forward voltages (V_F).

Adjusting Output Current

The output current of each channel (I_{OUT}) is set by an external resistor, R_{ext} . The relationship between I_{OUT} and R_{ext} is shown in the following figure.

The output current of each channel (I_{OUT}) is set by an external resistor, R_{ext} . When output channels are turned on, V_{REXT} is around 0.4V. The relationship between I_{OUT} and R_{ext} is shown in the following figure.

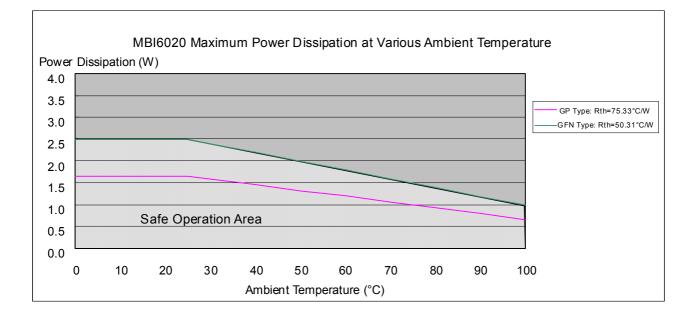
Also, the output current can be calculated from the equation:

 $I_{OUTA} = V_{REXT} / R_{extA}$

 $I_{\text{OUTB}} = V_{\text{REXT}} / R_{\text{extB}}$

 $I_{OUTC} = V_{REXT} / R_{extC}$

Where R_{extA} , R_{extB} , and R_{extC} are the resistances of the external resistors connected to R-EXTA, R-EXTB, R-EXTC terminals.


Package Power Dissipation (P_D)

The maximum power dissipation, $P_D(max)=(T_{j,max}-T_a)/R_{th(j-a)}$, decreases as the ambient temperature increases.

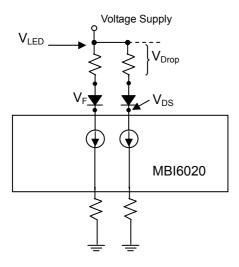
The power dissipation $(\ensuremath{\mathsf{P}}_{\ensuremath{\mathsf{D}}})$ of MBI6020 is calculated by the equation:

 $\mathsf{P}_{\mathsf{D}} = (\mathsf{V}_{\mathsf{DD}}\mathsf{x}\mathsf{I}_{\mathsf{DD}}) + [\mathsf{I}_{\mathsf{OUTA}}\mathsf{x}(\mathsf{V}_{\mathsf{DSA}} - \mathsf{V}_{\mathsf{REXTA}})] + [\mathsf{I}_{\mathsf{OUTB}}\mathsf{x}(\mathsf{V}_{\mathsf{DSB}} - \mathsf{V}_{\mathsf{REXTB}})] + [\mathsf{I}_{\mathsf{OUTC}}\mathsf{x}(\mathsf{V}_{\mathsf{DSC}} - \mathsf{V}_{\mathsf{REXTC}})]$

Please refer to the following figure to design within the safe operation area.

Load Supply Voltage (V_{LED})

The design of V $_{\mbox{\scriptsize LED}}$ should fulfill two targets:

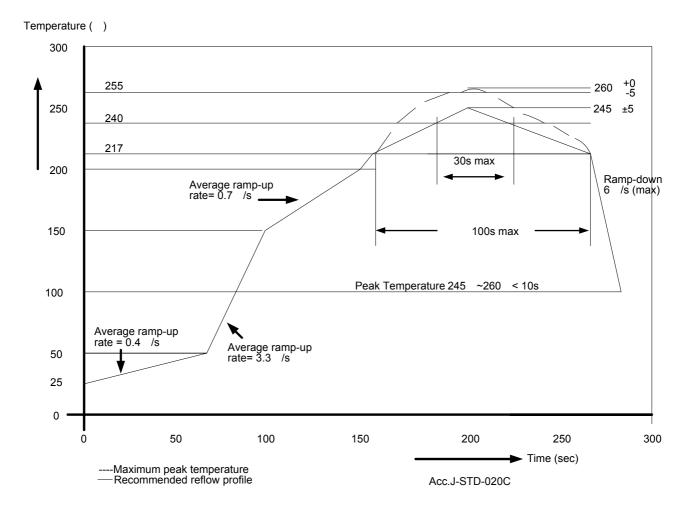

1. Less power consumption and heat

2. Sufficiently headroom for the LED and driver IC to operate in the constant current region.

From the figure below, $V_{DS}=V_{LED}-V_F$, which V_{LED} is the supply voltage of LED. $P_{D (act)}$ will be greater than $P_{D (max)}$, if V_{DS} drops too much voltage on the driver. In this case, it is recommended to use the lowest possible supply voltage or to set an external resistor to reduce the by V_{DROP} .

 $V_{DS}=(V_{LED}-V_F)-V_{DROP}$

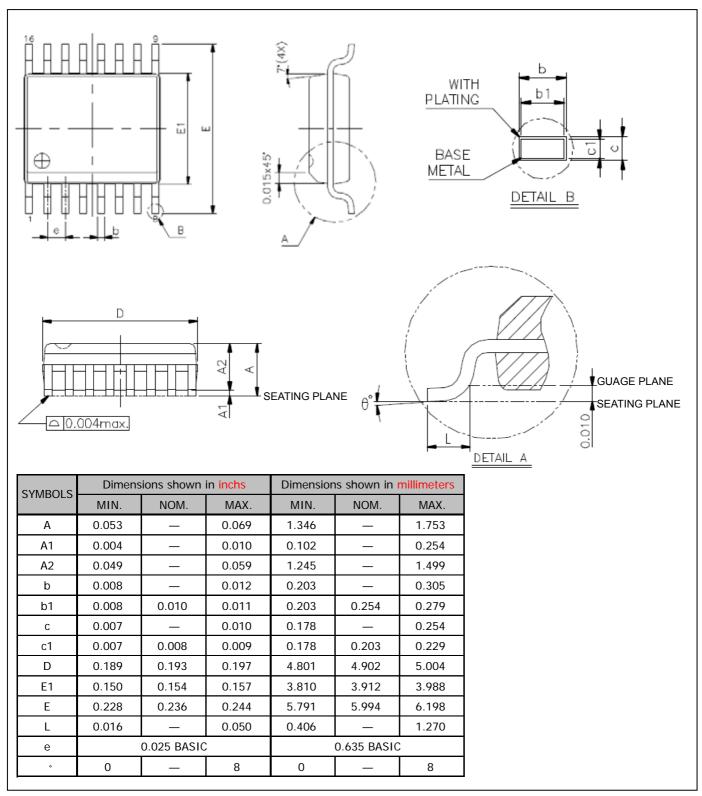
Please refer to the following figure for the application of the resister.

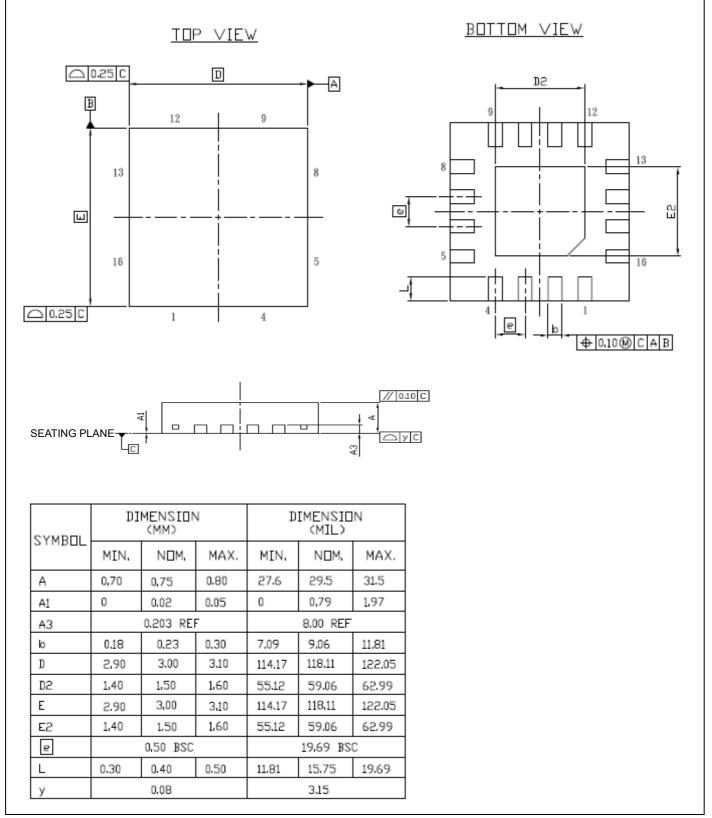


Switching Noise Reduction

LED drivers are frequently used in switch-mode applications which always behave with switching noise due to the parasitic inductance on PCB. To eliminate switching noise, please refer to *"Application Note for 8-bit and 16-bit LED Drivers-Overshoot"*.

Soldering Process of "Pb-free" Package Plating*

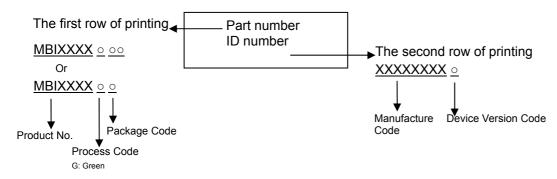

Macroblock has defined "Pb-Free" to mean semiconductor products that are compatible with the current RoHS requirements and selected 100% pure tin (Sn) to provide forward and backward compatibility with both the current industry-standard SnPb-based soldering processes and higher-temperature Pb-free processes. Pure tin is widely accepted by customers and suppliers of electronic devices in Europe, Asia and the US as the lead-free surface finish of choice to replace tin-lead. Also, it is backward compatible to standard 215°C to 240°C reflow processes which adopt tin/lead (SnPb) solder paste. However, in the whole Pb-free soldering processes and materials, 100% pure tin (Sn) will all require from 245 °C to 260°C for proper soldering on boards, referring to J-STD-020C as shown below.


Package Thickness	Volume mm ³ <350	Volume mm ³ 350-2000	Volume mm ³ 2000
<1.6mm	260 +0 °C	260 +0 °C	260 +0 °C
1.6mm – 2.5mm	260 +0 °C	250 +0 °C	245 +0 °C
2.5mm	250 +0 °C	245 +0 °C	245 +0 °C

*Note: For details, please refer to Macroblock's "Policy on Pb-free & Green Package".

Package Outline

MBI6020GP Outline Drawing



MBI6020GFN Outline Drawing

Note 1: The unit for the outline drawing is mm.

Note 2: Please use the maximum dimensions for the thermal pad layout. To avoid the short circuit risk, the vias or circuit traces shall not pass through the maximum area of thermal pad.

Product Top Mark Information

Product Revision History

Datasheet version	Device Version Code
V1.00	А
V1.01	А

Product Ordering Information

Part Number	RoHS Compliant	Weight (g)
	Package Type	
MBI6020GP	SSOP16L-150-0.64	0.067g
MBI6020GFN	QFN16L-3*3-0.5	0.038g

Disclaimer

Macroblock reserves the right to make changes, corrections, modifications, and improvements to their products and documents or discontinue any product or service. Customers are advised to consult their sales representative for the latest product information before ordering. All products are sold subject to the terms and conditions supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. Macroblock's products are not designed to be used as components in device intended to support or sustain life or in military applications. Use of Macroblock's products in components intended for surgical implant into the body, or other applications in which failure of Macroblock's products could create a situation where personal death or injury may occur, is not authorized without the express written approval of the Managing Director of Macroblock. Macroblock will not be held liable for any damages or claims resulting from the use of its products in medical and military applications.

Related technologies applied to the product are protected by patents. All text, images, logos and information contained on this document is the intellectual property of Macroblock. Unauthorized reproduction, duplication, extraction, use or disclosure of the above mentioned intellectual property will be deemed as infringement.